Het Clay Mathematical Institute uit Cambridge, Massachusetts reikt 1 miljoen dollar uit voor degene die één van de zeven belangrijkste wiskunde problemen oplost. Dat zijn het vermoeden van Riemann, het vermoeden van Poincaré, het P versus NP probleem, het vermoeden van Birch en Swinnerton-Dyer, het vermoeden van Hodge, de Mass Gap Hypothesis in de Yang-Mills theorie en de oplossing van de Navier-Stokes vergelijkingen.
Allemaal abracadabra taal voor niet-wiskundigen. En zelfs voor wiskundigen zijn deze problemen onmetelijk moeilijk. Het vermoeden van Riemann is een bekend probleem dat heel veel voor de wiskunde zal betekenen als het eenmaal opgelost is. Het vermoeden zegt dat 'alle niet-triviale nulpunten van de zètafunctie van Riemann op de kritische lijn liggen.' Dit is heel moeilijk uit te leggen maar het vermoeden heeft te maken met de verdeling van de priemgetallen over de natuurlijke getallen. Hoe vaak komen ze voor, hoe liggen ze verspreid etcetera. Er is namelijk nog steeds geen ordening gevonden in het aantal en de opvolgingen van de priemgetallen. Wereldwijd zijn honderden computers op dit moment aan het rekenen om het volgende priemgetal te ontdekken.
Volgens mathematisch fysicus prof. dr. Robbert Dijkgraaf is elk groot vermoeden af te beelden op een T-shirt. Hij bedoelt daarmee te zeggen dat de wiskunde vreselijk moeilijke problemen kan samenvatten in mooie formules en/of woorden. Kijk maar naar het vermoeden van Riemann. 'Alle niet-triviale nulpunten van de zètafunctie van Riemann liggen op de kritische lijn.' Een moeilijke stelling maar past wel op een T-shirt!